Preconditioned Krylov Subspace Methods in Nonlinear Optimization

نویسنده

  • J. Fiala
چکیده

One of the possible ways of solving general problems of constrained nonlinear optimization is to convert them into a sequence of unconstrained problems. Then the need arises to solve an unconstrained optimization problem reliably and efficiently. For this aim, Newton methods are usually applied, often in combination with sparse Cholesky decomposition. In practice, however, this approach may not be optimal in some cases and a suitable iterative algorithm for the solution of the Newton system may be preferred. In this paper, we show that for some type of problems the use of Krylov subspace methods with suitable preconditioners leads to considerable savings in computational time. Moreover, a new adaptive preconditioner based on the ellipsoid method is described in detail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving large systems arising from fractional models by preconditioned methods

This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...

متن کامل

Computing Covariance Matrices for Constrained Nonlinear Large Scale Parameter Estimation Problems Using Krylov Subspace Methods

In the paper we show how, based on the preconditioned Krylov subspace methods, to compute the covariance matrix of parameter estimates, which is crucial for efficient methods of optimum experimental design. Mathematics Subject Classification (2000). Primary 65K10; Secondary 15A09, 65F30.

متن کامل

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

On the Behavior of Combination High-Order Compact Approximations with Preconditioned Methods in the Diffusion-Convection Equation

In this paper, a family of high-order compact finite difference methods in combination preconditioned methods are used for solution of the Diffusion-Convection equation. We developed numerical methods by replacing the time and space derivatives by compact finitedifference approximations. The system of resulting nonlinear finite difference equations are solved by preconditioned Krylov subspace m...

متن کامل

Parallel Full Space SQP Lagrange-Newton-Krylov-Schwarz Algorithms for PDE-Constrained Optimization Problems

Optimization problems constrained by nonlinear partial differential equations have been the focus of intense research in scientific computing lately. Current methods for the parallel numerical solution of such problems involve sequential quadratic programming (SQP), with either reduced or full space approaches. In this paper we propose and investigate a class of parallel full space SQP Lagrange...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005